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Root Hair Development
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ABSTRACT

Root hairs are projections from the epidermal cells
of the root that are thought to increase its effective
surface area for nutrient and water uptake, enlarge
the volume of exploited soil, and aid in anchoring
the plant to the soil. Their formation occurs as a
series of developmental processes starting with cell
fate specification in the meristem. The root-hair-
forming epidermal cell, or trichoblast, then partici-
pates in the diffuse growth phase associated with
the elongation of the main root axis. After the fully
elongated trichoblast exits the elongation zone,
growth is reorganized and localized to the side in
the process of root hair initiation. Initiation is then
followed by a sustained phase of tip growth until the
hair reaches its mature length. Thus, root hairs
provide insight into a range of developmental

processes from cell fate determination to growth
control. The theme emerging from the molecular
analysis of the control of root hair formation is that
many regulators act at several stages of develop-
ment. Root hair formation is also responsive to a
multitude of nutrient and other environmental
stimuli. Therefore, one explanation for the presence
of the complex networks that regulate root hair
morphogenesis may lie in the need to coordinate
their highly plastic developmental program and
entrain it to the current soil microenvironment
being explored by the root.

Key words: Arabidopsis; Auxin; Calcium; Cyto-
skeleton; Root hair; Tip growth

RooTt HArR ForMm AND FUNCTION

Root hairs are specialized projections from modified
epidermal cells of the root. They have been pro-
posed to aid the root in nutrient and water acqui-
sition by increasing both the surface area of the root
and the volume of soil the root can access. In ad-
dition, they may aid in anchoring the root system
more closely to the soil. In most plant species (most
ferns, some monocots, and nearly all dicots), all
epidermal cells of the root appear capable of pro-
ducing a hair (so called Type I plants, Figure 1),
whereas in others there is a mix of cells with the
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potential to make root hairs (trichoblasts) and those
incapable of initiating this developmental program
(atrichoblasts). Those species showing this mixed
pattern are further divided on the basis of where the
root hairs form. In Type II plants—Lycopodium, Se-
laginella and Equisetum, some monocots, and the
dicot family Nymphaeaceae—root hairs form from
the smaller cell produced by an asymmetric cell
division in the meristem (Cutter and Feldman 1970;
Cutter and Hung 1972; Cormack 1937). The Type III
pattern of root hair formation is found in the
Brassicaceae and is characterized by the root epi-
dermal cells occurring in files composed of either
atrichoblasts or trichoblasts (Cormack 1935, 1949;
Figure 1A). Thus, the first phase of root hair pro-
duction is cell fate specification at the meristem
(either trichoblast or atrichoblast).
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Figure 1. Patterns of root hair development. (A) Cross section of an Arabidopsis primary root showing spatial rela-
tionships of cell types to root-hair-forming cells (trichoblasts). Note that trichoblasts form over the junction of two
underlying cortical cells. (B) Bright field images of the Arabidopsis primary root showing zones of development and
developmental progression of a trichoblast as a root hair emerges, scale bar = 10 pm. i-initiation site; rh-root hair. (C) The
three themes of root epidermal differentiation in plants: Type I, any cell can form a root hair; Type II, the trichoblast is the
product of an asymmetrical cell division; Type III, differentiation producing files of either trichoblasts or atrichoblasts.
Purple, atrichoblast; blue, trichoblast.
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Upon exiting the elongation zone, the trichoblast
initiates localized growth processes that lead to the
emergence of a hairlike projection from the epi-
dermal cell wall. The root hair is produced in the
differentiation region of the root (Figure 1B) after
diffuse elongation growth of the cell has ceased.
Thus, when the root epidermal cell initiates a lateral
bulge that will form a root hair, it must reorganize
and redirect its axis of growth to a localized point
where the outgrowth of the root hair will form. This
site is precisely controlled along the lateral wall of
the cell. For example, in Arabidopsis, in the absence
of other factors, initiation occurs at the apical end of
the trichoblast (closest to the root tip; Figure 1B,
Dolan and others 1993, 1994). Thus, there must be
a cellular mechanism to mark this position and act
as a nucleation site for the growth machinery that
will form the root hair. Once initiated, the root hair
undergoes tip growth through which the tubelike
form of the hair is generated until, at maturation,
tip growth stops. Figure 1B shows this develop-
mental progression in the model plant Arabidopsis.

All the developmental activities from cell fate
specification to termination of root hair tip growth
are plastic, being entrained to a range of endog-
enous and environmental signals, not the least of
which appear to be the availability of the nutrients
the root hairs will transport from the soil. In this
review, we will outline our increasingly detailed
understanding of the molecular and cellular basis of
the complex developmental progression that gen-
erates a root hair. In addition, we will explore the
role of root hairs in the nutrient status of the plant.
Lastly, we will outline evidence supporting the idea
that the complex plastic nature of root hair devel-
opment is related to their specialized function in
nutrient and water uptake.

DEecbING TO MAKE A RooT HAIR:
TricHOBLAST CELL FATE SPECIFICATION

Trichoblasts can be distinguished from atrichoblasts
even in the meristematic zone by differences in
cytoplasmic structure (trichoblasts are smaller, show
more dense cytoplasm, and reduced vacuolation;
Dolan and others 1994; Galway and others 1997) in
addition to showing unique patterns of gene ex-
pression (see below). Of the three basic schemes
that describe root hair fate specification (Types I-IIJ,
Figure 1C), most is known about Type III from
studies on Arabidopsis. In this plant, trichoblasts
form from epidermal cells overlying the junction of
two cortical cells, leading to alternating files of
trichoblasts and atrichoblasts (Figure 1A; Dolan and

others 1994). This patterning relative to cell position
suggests cell fate may be governed by cell-to-cell
communication very early after cell formation in
the meristem. The epidermal cells may therefore be
responding to biochemical or perhaps even bio-
physical positional information from the cortical
cells to make decisions as to cell fate. Although we
are still far from a complete understanding of how
such choices are made, a concerted effort from
several labs to screen for mutants in root hair for-
mation has helped reveal some of the transcrip-
tional regulators responsible for specification of
trichoblast and atrichoblast cell fate.

The Genetics of Root Hair Formation
in Arabidopsis

Mutants in which the distribution of trichoblasts
throughout the root epidermis is disrupted have
proven very informative in unraveling molecular
mechanisms responsible for epidermal cell differ-
entiation (Table 1). At the extremes of the pheno-
types of these cell-fate mutants are plants that
produce either ectopic root hairs or completely lack
root hairs. Mutants that form ectopic root hairs ac-
tually appear to be defective in gene products that
promote atrichoblast cell fate, including defects in
ELPI, ERHI, ERH3, GL2, TTGIl, and WER. Con-
versely, mutants that lack root hairs appear to be
defective in gene products that promote trichoblast
cell fate such as AXR2, AXR3, CPC, RHD6, RHLI,
RHL2, RHL3, and SLRI (Table 1).

GL2, CPC, TTG1, and WER are all transcription
factors involved in cell patterning. For example,
GL2 is a homeodomain leucine zipper transcription
factor that is expressed in atrichoblast cells and is
thought to promote hairless cell fate (Masucci and
others 1996). WER encodes a Myb transcription
factor and TTG1 encodes a protein that contains four
WD40 repeats and is part of the signaling pathway
that likely regulates transcription factor activity
(Walker and others 1999). Mutations in TTGI result
in several pleiotropic phenotypes, including ectopic
root hair formation and lack of leaf trichomes. Both
WER and TTG1 positively regulate GL2 expression
and thus promote atrichoblast cell fate (Walker and
others 1999). Conversely, the CPC gene encodes a
Myb-related protein that promotes trichoblast cell
identity (Wada and others 1997). There appears to
be a complex network of transcriptional regulation
between WER, CPC, and GL2. For example, posi-
tion-dependent expression of CPC and GL2 depends
on the presence of the functional WER gene. In the
werl mutant background, the ectopic expression of
WER induces formation of root hairs on approxi-
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Table 2. Continued  Mutants of Arabidopsis Affecting the Root Hair Initiation Process

Jones and others

May act as a common

Ectopic

Member of the

Rop2 OX

2002

molecular switchin

RHO family of expression

Overexpressing

Rop2.

many different signal

transduction
pathways.

under control
of CaMV35S
promoter.?

small monomeric

GTPases.

Part ofsignaling

network that controls
polarized growth.

Li and others 2001
Jones and others

Pleiotropic phenotypes
includingabnormal

May act as a common

Defects in

Member of the

CA-Rop2

molecular switchin
many different

potassium
transport

RHO family of

Constitutively

2002

light control ofseedling
development, more

small GTPases.

active GTP-bound
mutated Rop2.

signaltransduction
pathways. Part of

prevent normal

lateral roots, enhanced

apical dominance, and
abnormally shaped

leaves.

cell polarization.

signaling network that
controls polarized

growth.

“In wild-type plants Rop2 is expressed in all vegetative tissues. Protein is localized to the root hair initiation site and root hair tip; wild-type Rop4 is expressed in root hairs and the protein localized to the initiation site and the growing

apex.

mately 50% of root epidermal cells, but these cells
are not necessarily located over the junction of two
cortical cells as they would be in wild-type plants.
This observation suggests that ectopic expression of
WERI1 induces epidermal cells to adopt cell fates
that are not determined by their position, implying
that WER gene regulation is critical for establish-
ment of the normal epidermal cell pattern. CPC is a
transcription factor that is expressed in trichoblast
cells, but the encoded protein is active in atricho-
blast cells. It has been suggested that CPC mediates a
lateral inhibition pathway that originates in atri-
choblast cells and prevents neighboring cells from
adopting an atrichoblast cell fate (Lee and Schie-
felbein 2002).

Hormonal Control of Cell Fate Specification

Physiological, biochemical, and anatomical studies
indicate an important role of the plant hormones
ethylene and auxin in establishing the epidermal
patterning of the root epidermis (Table 1; Masucci
and Schiefelbein 1994, 1996; Tanimoto and others
1995). For example, exposure of wild-type Arabid-
opsis plants to the ethylene precusor 1-aminocyclo-
propane-1-carboxylic acid (ACC) induces the
formation of ectopic root hairs, suggesting that
ethylene is a positive regulator of trichoblast cell
fate (Tanimoto and others 1995).

Consistent with this proposed role of ethylene is
the observation that the ethylene-related Arabidop-
sis mutants elp and ctrl lead to ectopic hair produc-
tion (Dolan and others 1994; Zhong and others
2002). elp is mutated in a gene that encodes a chi-
tinase-like protein (AtCTL1; Zhong and others
2002) but this mutant’s action on root hair forma-
tion is probably not directly through a role for chi-
tinase in cell-fate determination but more likely
from one of its pleiotropic effects, which are known
to include increased ethylene production (Zhong
and others 2002). CTRI encodes a serine—threonine
protein kinase that acts as a negative regulator of
ethylene response and so ctrl mutants behave as if
they perceive ethylene all the time (Kieber and
others 1993; Roman and others 1995). In ctrl the
initial patterning of the root epidermis is identical to
wild-type. For example, GL2 expression patterns are
unaltered in this mutant, implying both that GL2
expression is not regulated by ethylene and that
ethylene’s effect on epidermal patterning is inde-
pendent from GL2 (Masucci and Schiefelbein 1996).
Therefore, it has been proposed that ethylene acts
later in epidermal cell development after cell divi-
sion has ceased. Consistent with this idea is the ef-
fect of ethylene on the rill mutant, rk/l is hairless
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but the early differentiation of the root epidermis, as
defined by wild-type-like GL2 expression pattern, is
normal. The mutant phenotype can be partially
rescued by application of exogenous ethylene, im-
plying that ethylene is acting to relieve a block in
the cell-fate specification program after GL2 has
been expressed (Schneider and others 1998).

A further line of evidence for ethylene’s action in
fate determination comes from the effect of this
hormone on dark-grown plants. Dark-grown Ara-
bidopisis plants (sustained on sucrose-containing
media) develop few root hairs but, if treated with
ethylene, these plants develop root hairs in their
normal (that is, over anticlinal cortical cell walls)
position. The ethylene-overproducing mutants etol,
eto2, and efo4 exhibit normal epidermal patterning,
even in the dark, with only cells over cortical cell
junctions forming root hairs (Cao and others 1999).
However, the efo3 mutant produces more ethylene
than these other ethylene-overproducing mutants
and this mutant forms root hairs on atrichoblasts,
indicating that high ethylene levels can induce ec-
topic formation of root hairs (Cao and others 1999).

The observation that ethylene-signaling-deficient
mutants such as etr! and ein2 display normal root
epidermal patterning might suggest that ethylene is
not required for root hair formation. However,
these mutants may not target the ethylene percep-
tion and response pathways associated with root
hair function. Also, the multiple ethylene receptors
known to exist in Arabidopsis (Bleecker and others
1998a) raise the possibility of functional redun-
dancy and compensation in the ethylene regulatory
pathway leading to root-hair-fate specification.

Even though application of auxin or auxin ana-
logs does not affect epidermal cell patterning
(Masucci and Schiefelbein 1996), genetic studies
have implicated IAA in the process of epidermal
cell-fate determination (Cernac and others 1997;
Masucci and Schiefelbein 1996; Pitts and others
1998; Wilson and others 1990). Thus, mutations in
genes that are known to alter auxin responses in-
hibit root hair formation (Tables 1-4). For example,
AXR?2 is a putative transcriptional regulator of auxin
responsive genes (Nagpal and others 2000) and axr2
mutants form very few root hairs. Similarly, axr3
plants have reduced numbers of root hairs. AXR3
encodes a transcription factor that needs to be de-
graded for auxin signal transduction to take place.
The axr3 protein is resistant to degradation and so
inhibits auxin signaling (Leyser and others 1996;
Worley and others 2000). The so/itary root mutant
(slr) is mutated in a member of the Aux/IAA protein
family and also has reduced numbers of root hairs.
slr is known to show reduced auxin sensitivity likely

through its function as an auxin-related transcrip-
tional repressor (Fukaki and others 2002). The axr2
and axr3 root hairless phenotypes can be rescued by
application of exogenous IAA, whereas the slrl root
hair phenotype can be partially rescued by appli-
cation of ethylene precursor ACC. Ethylene or
auxin can also rescue the low-density root hair
phenotype seen in the rhd6 mutant (Masucci and
Schiefelbein 1994), further suggesting that there
may be a link between auxin and ethylene and
root-hair-cell-fate determination. Indeed, there are
many reports of crosstalk between auxin and eth-
ylene response pathways in roots, for example,
ethylene-induced inhibition of root growth requires
auxin transport (reviewed in Swarup and others
2002). Characterizing root hair mutants such as
rhdé at the molecular and cellular level will help
determine if auxin and ethylene share a common
signaling pathway to regulate cell-fate determina-
tion or if auxin operates via ethylene-mediated
events (for example, through auxin-mediated eth-
ylene production; Massuci and Schiefelbein 1996).

The Cytoskeleton and Cell Fate Determination

Recent evidence also points to the microtubule cy-
toskeleton as an important determinant of root ep-
idermal cell fate. When A-tubulin levels were
suppressed using Arabidopsis plants expressing anti-
sense to A-tubulin, lines that showed a reduction in
A-tubulin gene expression also exhibited ectopic
root hair formation (Bao and others 2001). This
observation indicates that disruption of microtubule
cytoskeleton dynamics affects root hair develop-
ment. Interestingly, the process of root hair forma-
tion once cell fate is specified (the initiation process,
see below) appears unaffected by microtubule dis-
rupting drugs (Bibikova and others 1999) suggest-
ing that microtubules may be acting selectively in
fate determination early in root hair development.
Additional evidence for the role of microtubule-
based cytoskeleton in trichoblast formation comes
from the cloning of the ERH3 gene. erh3 is a mutant
that forms ectopic root hairs and appears involved
in specification of cell identities in the root cap,
endodermis, and cortex. ERH3 appears to be re-
quired for both trichoblast and atrichoblast cell-fate
determination and to act in the very early steps of
the cell-fate specification process because GL2 ex-
pression patterns in the meristem are disrupted in
erh3 plants. ERH3 encodes a katanin-p60 protein.
The katanin family of proteins is known to sever
microtubules in animal cells (McNally and Vale
1993) and appears to be involved in plant cell wall
assembly (Burk and others 2001). One possible
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explanation of how microtubules might participate
in the fate determination process is through a role in
localizing positional cues that define the fate of cells
once they divide and are exiting the meristem
(Webb and others 2002).

RooTt HAIR INITIATION

After cell fate has been specified, the first morpho-
logical indication of root hair formation is the
process of localized bulging in the trichoblast wall at
the site of incipient root hair emergence, the process
of root hair initiation. Initiation involves switching
the growth habit of an epidermal cell from diffuse
elongation to highly localized asymmetrical expan-
sion on one side of the cell (Figure 1B; Leavitt
1904). Thus, in the course of root hair initiation, a
new polarity axis is established within the tricho-
blast, while the old longitudinal polar axis is main-
tained (Figure 1B). This process of axis definition,
fixation, and wall deformation is thought to involve
the coordination of processes, including assembly of
cytoskeleton-based machinery (Baluska and others
2000b; Emons and Derksen 1986), alteration of cell
wall properties and the onset of localized exocytosis
(Bibikova and others 1998; Vissenberg and others
2001), and activation of membrane transporters,
possibly accomplished by a hormone-related control
system (Masucci and Schiefelbein 1996; Rigas and
others 2001).

Root hair initiation is best defined in Arabidopsis.
In this plant, trichoblasts are arranged in files and
the root hair is always formed at the apical (root tip)
end of the cell (Figure 1, Type III). Consequently, it
is possible to predict when and where an initiating
root hair will form and so analyze cellular events at
this particular site. Such analysis has allowed char-
acterization of both transcriptional regulation
(Schiefelbein 2000) and cell physiological events
specifying the site of root hair formation (see for
example, Baluska and others 2000a,b; Bibikova and
others 1998; Dolan and others 1994; Vissenberg and
others 2001).

The earliest morphological indication of the onset
of root hair initiation is movement of the nucleus to
the future initiation site (Meeks 1985). Such nu-
clear migration is seen in other plant cells under-
going localized growth, for example, budding in
moss protonemata (Saunders and Helper 1982), but
it is unclear why the nucleus should move. Such
organelle relocalization may reflect the need for
supplying elevated levels of transcripts at the
growth initiation site, which is likely to represent an
area of intense metabolic activity. However, al-

though nuclear movement precedes the bulging of
the cell wall at the root hair initiation site, it does
not appear to be essential for initiation to take place.
For example, preventing this nuclear movement
with microtubule-depolymerizing drugs does not
inhibit root hair formation (Baluska and others
2000a; T. Bibikova and S. Gilroy, unpublished re-
sults). In addition, current evidence indicates that
the positional cues that locate the future initiation
site are laid down prior to nuclear migration. Thus,
proteins important to root hair initiation, such as
the RHO-related, plant-specific monomeric G-pro-
teins ROP2 and ROP4, are localized soon after cell
division (Jones and others 2002; Molendijk and
others 2001), whereas nuclear migration occurs
directly before wall bulging. ROP localization pro-
vides an important clue as to how the initiation site
may be marked (that is, by G-protein-mediated
events) and highlights just how early this site is
specified (that is, in the meristem as cells exit mi-
tosis). In addition, ROPs appear to be important el-
ements in multiple phases of root hair development
(discussed in more detail below), providing candi-
dates for one class of proteins that might act to co-
ordinate the developmental program that produces
a root hair.

Although AtROP2 and AtROP4 remain the only
clear molecular candidates as to how the initiation
site is marked, our understanding of the molecular
basis of how subsequent wall bulging occurs is more
complete. For example, Ixr mutants develop signif-
icantly wider initiation sites than wild-type plants.
LRX encodes a wall protein that contains both leu-
cine-rich and extensin domains. Leucine-rich do-
mains are thought to mediate protein—protein
interactions or possibly act in ligand binding in the
apoplast, whereas extensins are wall proteins
thought to be involved in modulating the physical
characteristics of the cell wall (Baumberger and
others 2001). Thus, LRX may well contain motifs for
sensing and modifying the status of the wall es-
sential for defining size of the localized outgrowth.
This theme of control of wall properties has emerged
as a key idea in understanding the process of wall
bulging during initiation.

Role of Wall Structure and pH in Initiation

Cell biological evidence suggests that cell wall
properties at the initiation site are altered in the
course of root hair initiation and these changes are
essential for initiation to take place. Thus, as soon as
the initiation bulge starts to appear on the surface of
a trichoblast, the pH of the cell wall at the initiation
site drops from approximately 5 to 4.5. This local-
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ized acidification persists throughout the initiation
process (Bibikova and others 1998). Preventing lo-
calized cell wall acidification with strong pH buffers
reversibly arrests root hair initiation, implying that
the pH changes are an essential part of the mecha-
nism that maintains and controls the local wall
bulging. However, other factors (such as LRX or
ROPs) must define the precise site and extent of
bulge formation because buffering the entire
trichoblast cell wall to pH 4.5 causes neither delo-
calized cell wall swelling nor formation of multiple
bulges as might be expected if cell wall pH alone
controlled wall deformation (Bibikova and others
1998). Possible mechanisms responsible for this
spatially limited, asymmetrical change in trichoblast
cell wall pH are localized activation of H*—ATPases
or localized secretion of weak acids at the initiation
site. Because root cell walls possess a strong pH
buffering capacity (Bibikova and others 1998; Fas-
ano and others 2001), large amounts of protons
must be moving to the wall to significantly alter its
pH. This proton flux is perhaps most easily achieved
by the activation of a plasma membrane pump.
Consistent with this idea that local decreases in
wall pH may mediate initiation, expansins have
been detected in cell walls of initiating root hairs
(Baluska and others 2000a). Expansins are cell-
wall-loosening proteins that have a pH optimum of
4.5 (Cosgrove 2000). Local cell wall acidification
would induce expansin activity and so facilitate
cell wall modifications that ensure localized bulge
formation.

Xyloglucan endotransferases (XETs) represent a
further activity that might convert localized changes
in wall pH to wall loosening. XETs are enzymes that
cleave and rejoin xyloglucan chains and may
thereby loosen the cell wall (Baydoun and Fry
1989; Fry and others 1992). During root hair initi-
ation, XET action is elevated at the site of bulge
formation (Vissenberg and others 2001). Unfortu-
nately, which particular XET is active at the initia-
tion site is not known, but XETs are more active at
acid pH. Therefore, it is possible that localized cell
wall acidification at the initiation site might con-
tribute to localized activation of XET (Vissenberg
and others 2001) and so promote turgor-driven
bulge formation.

Role of the Cytoskeleton in Initiation

In Equisetum hyemale, root hair initiation is associ-
ated with localized rearrangement of microtubules
from longitudinal to transverse orientation specifi-
cally at the initiation site (Emons and Derksen
1986). Although inhibitor studies suggest that dis-

rupting the microtubule cytoskeleton does not in-
hibit the process of initiation (Bibikova and others
1999), Arabidopsis plants with reduced levels of A-
tubulin expression sometimes form several initia-
tion sites on one trichoblast implying that an intact
microtubule cytoskeleton might play a role in de-
fining the initiation site (Bao and others 2001).

The actin cytoskeleton also appears important for
regulating root hair initiation. Actin depolymerizing
and fragmenting drugs inhibit initiation (Bibikova
and others 1999; Braun and others 1999; Miller and
others 1999), and derI plants, which possess a point
mutation in the gene encoding actin2, have en-
larged or misplaced initiation sites (Ringli and oth-
ers 2002). Interestingly, as yet there are few reports
of dynamic rearrangements of the actin cytoskele-
ton associated with the initiation process. One
possible mode of action of actin is suggested by the
observation that expression of a constitutively ac-
tive version of the ROP2 monomeric G-protein
sometimes induces multiple or misplaced initiation
sites. ROP2 is thought to be involved in regulation
of F-actin assembly (Fu and others 2002). There-
fore, it is tempting to speculate that ROP2 might be
involved in positioning the root hair initiation site
through localized regulation of actin-dependent
processes.

Hormones and Regulating Initiation

As described above for cell-fate specification, auxin
and ethylene signaling also appear to play critical
roles in defining the exact location of the root hair
initiation site. In Arabidopsis, root hairs normally
form at the apical end of the trichoblast but excess
ethylene causes a shift in this root hair initiation
position. For example, the ethylene overproducing
mutant efol initiates hairs very close to the apical
end of the trichoblast (Masucci and Schiefelbein
1994) whereas in etrl, a mutant deficient in ethyl-
ene perception, the initiation site is located more
basally relative to wild-type (Masucci and Schie-
felbein 1996; Dolan 2001).

Similar evidence suggests auxin action in regu-
lating the site of initiation. In the auxin-insensitive
mutant axr2, initiation is shifted toward the basal
side of the trichoblast, and the basal shift in initia-
tion seen in the rkd6 mutant can be rescued by
application of either ethylene or auxin analogs
(Masucci and Schiefelbein 1994). Therefore, ethyl-
ene and auxin appear involved in the signaling
cascade responsible for positioning the root hair
initiation site along the length of the trichoblast.
However, the precise molecular mechanism
whereby auxin and ethylene might act to regulate
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Figure 2. Tip-focused cytoplasmic Ca** gradients associated with tip growth of Arabidopsis root hairs but not the initi-
ation process. (A) Ca>* gradients are not evident during the initiation process. (B) A tip-focused Ca>* gradient is associated
with tip growth. Images are confocal ratio images of Arabidopsis root hairs expressing the fluorescent Ca** sensor Cameleon
YC2.1 (Allen and others 1999) and monitored using a confocal microscope. Cytosolic Ca** levels have been color-coded
according to the inset scale. i-initiation site; rh-root hair. Scale bar (A) -10 pm, (B) 20 pm.

positioning of the initiation of root hair remains to
be determined.

Ionic Fluxes and the Regulation and Root Hair
Initiation

During the process of initiation, although the levels
of cytosolic Ca** remain unchanged at the initiation
site (Figure 2; Wymer and others 1997), cytoplasmic
pH is locally elevated (Bibikova and others 1998).
This elevation persists throughout initiation and
dissipates with the onset of tip growth. However,
preventing the localized cytoplasmic alkalinization
did not inhibit the initiation process (Bibikova and
others 1998). Because the wall is locally acidified at
this point in the initiation process, it is possible that
the cytoplasmic pH change simply reflects H" efflux
to the wall rather than a cytoplasmic regulatory
event.

In addition to a role for H" fluxes in the initiation
process, there is evidence that K* transport is im-
portant for setting up the correct growth machinery
at the initiation site. Thus, TRHI encodes a potas-
sium transporter belonging to the AtKKT/AtKUP/
HAK" transporter family (Rigas and others 2001)
and trk] mutants sometimes form several initiation
sites. This observation may indicate that either a

novel K*-related signaling pathway linked to initi-
ation may be operating in these cells or that K*
transport, along with the associated control of
membrane potential by K* fluxes, might play a
regulatory role in the initiation process.

TrRANSITION FROM INITIATION TO TiP
GROWTH

Root hair initiation and subsequent tip growth are
well recognized as morphologically, physiologically,
and genetically distinct processes. However, after
initiation but before the onset of actual tip growth,
root hairs must organize and arrange the apical
growth machinery at the tip of the now initiated
bulge. It is not straightforward to distinguish mu-
tants that are defective in the apical growth ma-
chinery from mutants that are defective in this
process of transition from initiating bulge-to-tip
growth. However, there are some indications that
the transition process is distinct to the regulation of
tip growth. For example, Arabidopsis root hairs do
not simply exit initiation and begin tip growth,
there is a small period of time where the initiated
root hair does not increase in size, that is, initiation
bulging has ended but rapid tip growth has yet to
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commence (Dolan and others 1994; Wymer and
others 1997). It seems likely that this pause in vis-
ible growth represents the initiated root hair re-
cruiting and organizing elements of the tip growth
machinery. The phenotype of some mutants also
implies that there may be genetically distinct com-
ponents of this transition period (Table 3). Thus, the
derl, cowl, auxl, and axrl mutants have root hairs
that are sometimes branched at the base, but these
mutants do not form branches once tip growth has
commenced. This observation suggests lesions in the
organization of the machinery that controls the
transition from initiation to tip growth rather than
tip growth itself.

T GROWTH

Once the root hair is initiated and the tip growth
transition completed, the genetically and physio-
logically independent process of tip growth occurs.
During this apical growth phase, deposition of new
plasma membrane and cell wall material is confined
to the expanding tip. Such localized growth gener-
ates the hairlike morphology of the mature root
hair. As outlined below, many insights about the
machinery of tip growth come from studies on
pollen tubes. Numerous features of tip growth are
likely shared between pollen tubes and root hairs,
for example, the fipl mutant affects elongation
growth in both these cell types (Parker and others
2000; Ryan and others 1998; Schiefelbein and oth-
ers 1993). On the other hand, there are undoubt-
edly unique aspects to growth control in each of
these systems, not the least of which will be related
to the divergent wall structure of the pollen tube
and root hair.

Role of Ca** Gradients in Tip Growth

Elongation in a variety of tip-growing cells seems
intimately associated with a tip-focused gradient in
cytosolic Ca®*. Plant cells usually maintain a cyto-
solic [Ca**] of approximately 100 nM but several
UM are found in the apical few micrometers of tip
growing cells ranging from fungal hyphae (Garril
and others 1993) and algal rhizoids (Brownlee and
Pulsford 1988) to pollen tubes (Pierson and others
1994) and root hairs (Figure 2B; Bibikova and
others 1997, 1999; de Ruijter and others 1998; Felle
and Hepler 1997; Jones and others 1998; Wymer
and others 1997). In addition, faster-growing root
hairs appear to have a more pronounced gradient,
whereas root hairs that have stopped elongating,
either through attaining a mature length or due to

some experimental manipulation, show a uniform
Ca** level of about 100 nM with no detectable Ca**
gradient toward the tip (Bibikova and others 1997,
1999; de Ruijter and others 1998; Felle and Hepler,
1997; Jones and others 1998; Wymer and others
1997). Measurements with the self-referencing
(vibrating) microelectrode have also shown that
Ca®* influx is higher at the tip than at the base or
sides of growing root hairs (Herrmann and Felle
1995; Jones and others 1995; Schiefelbein and
others 1992).

This tip-focused Ca** gradient appears important
for driving growth. When either new tip growth is
induced or the direction of root hair elongation is
misdirected, for example, through treatments such
as Nod factor application (de Ruijter and others
1998), touch stimulation (Bibikova and others
1998), or interference with the operation of the
microtubule cytoskeleton (Bibikova and others
1999), the new growing tip always exhibits a tip-
focused gradient centered on the new direction of
growth. Similarly, treatments that disrupt the gra-
dient in normally elongating root hairs, such as
addition of Ca®* ionophores, Ca?* channel blockers,
or the microinjection of Ca** buffers that diffuse the
Ca** gradient, all arrest tip growth. Lastly, imposing
an artificial [Ca®*] gradient specifically at the tip of
the hair leads to growth directed by the new gra-
dient (Bibikova and others 1998). All these obser-
vations are consistent with the tip-focused Ca**
gradient localizing and directing growth to the ap-
ical dome at the very tip of the elongating root hair.
Interestingly, in Arabidopsis, redirection of tip
growth by treatment with Ca?* ionophore leads to
only a transient alteration in growth direction (Bi-
bikova and others 1998). Thus, root hairs normally
grow at about 90° to the Arabidopsis root surface,
but, if reoriented to grow parallel to the root, this
direction is maintained for only 5-10 min before the
original growth direction is resumed (Bibikova and
others 1998). This observation suggests that some
other as yet unidentified factor is orienting the Ca**
gradient that directs growth away from the surface
of the root.

The tip-focused Ca?* gradient and the associated
localized Ca?* influx at the apex of the hairs
(Herrmann and Felle 1995; Schiefelbein and others
1992) implies an accumulation or localized activa-
tion of Ca®** channels at the growing apex of the
root hair. Although the positive identification of a
growth-related Ca?* transporter has yet to be re-
ported, a strong candidate for this activity is a
hyperpolarization-activated Ca**-permeable chan-
nel which has been electrophysiologically identified
in root hair protoplasts and may be localized to the
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apical part of the hair (Very and Davies 2000).
Fluorescence staining for Ca®* channels also tenta-
tively implies a gradient of channels to the growing
root hair tip (Bibikova and Gilroy 2000). However,
we must await localization of defined channel pro-
teins and spatial characterization of their activity to
identify the elusive tip-growth-related Ca** influx
channel.

Even though the precise nature of a root hair
growth-related Ca?* channel has yet to be deter-
mined, we have some models about how the Ca?*
influx might be regulated at the tip of root hairs
from studies on tip-growing fungal hyphae. The
hyphae of Saprolegnia and Neurospora show a tip-
focused Ca** gradient that appears to drive growth
(Garrill and others 1993; Knight and others 1994;
Levina and others 1994, 1995). Stretch-activated
Ca**-permeable channels are concentrated at the
growing tip of S. ferax hyphae (Garrill and others
1993) and treatment with cytochalasin disrupts this
asymmetrical distribution and inhibits hyphal
growth. These observations imply that an actin
network maintains the channel gradient in the tip
and that the mechanical strain at the growing apex
may regulate channel gating (Levina and others
1994). In contrast, the plasma membrane through-
out the Neurospora hypha contains Ca®*-activated
Ca?* channels (Levina and others 1995). In this
case, once a tip-localized Ca®* influx is initiated it
may be self-sustaining, with the high apical Ca**
recruiting more open channels to the hyphal tip.
However, as a note of caution, the mechanisms of
tip growth in plant and fungal cells are unlikely to
be identical, for example, a secretion-related apical
body called the Spitzenkorper (Girbardt 1969) is
present in fungal but not plant cells, and the chitin-
rich hyphal cell wall is markedly different in struc-
ture to the cellulosic root hair cell wall.

Monomeric G-Proteins and Tip Growth

Small, monomeric GTPases (M;-21-30 kD) have
recently emerged as important regulators of the tip
growth process, perhaps through regulation of the
Ca?* gradient itself. Many insights into how these
G-proteins regulate apical growth have emerged
from studies on elongating pollen tubes, but, in this
case, as opposed to growth localization, there seem
to be very strong parallels between tip growth in
pollen tubes and root hairs. Importantly, both ap-
pear to utilize Ca®* gradient-driven growth that, as
described below, is strongly influenced by the
activity and/or localization of monomeric G-pro-
teins and actin. Therefore, we will first discuss how
G-proteins are thought to regulate pollen tube

growth in order to develop some models about how
the analogous processes might occur in root hairs.

The Arabidopsis genome likely encodes 93
monomeric G-proteins (Wu and others 2001). Of
the 5 major classes of eukaryotic monomeric G-
proteins (ras, rho, rab, arf, and ran), ras has not
been found in plants and (in Arabidopsis) the rab
family members predominate with 53 putative
proteins (Wu and others 2001). Rabs and arfs are
classically thought to mediate secretory processes
and vesicle trafficking and so are obvious candidates
for elements of the tip growth machinery. However,
it is the plant Rho homologs (ROPS) that have
emerged as key regulators of tip growth, as well as a
host of other plant processes. Among 11 ROPs pre-
sent in Arabidopsis genome, ROPI, ROP3, and ROP5
are expressed in pollen (Li and others 1998; Zheng
and Yang 2000). Expression of dominant negative
versions of ROPs 1 and 5 inhibited pollen tube
growth, whereas expression of constitutively active
versions of these proteins delocalized growth,
causing swollen tubes to form. These ROPs prefer-
entially localize to the apex of the growing pollen
tube (Lin and others 1996). However, it appears
that it is the GTP-bound ROP 1, but not its GDP-
bound form, that localizes to the apical plasma
membrane, leading to a proposed model where
GTP-bound ROP forms a self-reinforcing recruit-
ment system to the tip membrane (Li and others
1998). Regulation of ROP activity by proteins that
promote or inhibit GTP turnover by the G-protein
may be localized in the lateral membrane behind
the tip and so also serve to focus the active ROPs to
the apex of the pollen tube. Disrupting ROP 1 and 5
activity disrupts the localization of the growth-re-
lated, tip-focused Ca** gradient (Fu and others
2001), implying that ROPs may regulate formation
of the gradient and so orient secretion and pollen
tube growth.

G-proteins also seem to be part of the tip growth
machinery in root hairs. For example, in Arabidopsis,
RHD3 encodes a putative GTP-binding protein
(Wang and others 2002) and the 243 mutant shows
disrupted tip growth, exhibiting short, wavy, or
branched root hairs. However, as in pollen tubes,
the clearest link of G-protein activity to tip growth
in root hairs has emerged from the identification of
ROP2, 4, and 6 as potentially important regulatory
players of root hair tip growth. Thus, ROP2 and
ROP4 have been shown to localize to the root hair
apex by immunofluorescence or GFP tagging (Jones
and others 2002; Molendijk and others 2001).
Constitutively active ROPs 2, 4, or 6 make root hairs
swell as they grow or cause longer, wider, and
sometimes curled root hairs to form, whereas a
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dominant negative ROP2 inhibits root hair growth
and makes root hairs wave (Jones and others 2002;
Molendijk and others 2001). Expression of consti-
tutively active ROP2 depolarized root hair tip
growth, whereas ROP2 overexpression resulted in
hairs with multiple tips (Jones and others 2002).
Disrupting ROP4 activity caused a delocalized Ca**
gradient concomitant with swelling of the root hairs
and also altered the structure of the microtubule
cytoskeleton (Molendijk and others 2001), all ef-
fects consistent with altering the activity of a critical
regulator of the tip growth machinery.

How might these ROPs be targeted to the plasma
membrane? ROPs are thought to be generally as-
sociated with membranes due to posttranslational
modification such as prenylation. However, treat-
ment with the membrane-trafficking inhibitor bre-
feldin inhibited localization of ROP4 in trichoblasts
(Moledijk and others 2001), suggesting that either
membrane trafficking or a secreted protein might be
responsible for targeting the protein to the plasma
membrane. In pollen tubes, overexpression of a
ROP GDP dissociation inhibitor (GDI) abolished the
tip localization of ROP. ROPs are activated by
binding GTP and inactivated as they convert the
GTP to GDP. GDIs prevent subsequent exchange of
GDP for GTP and so lock the G-protein in the GDP-
bound form. Thus, the prevention of ROP localiza-
tion by a GDI implies that ROP activity may be re-
quired to recruit itself to the membrane (Takahashi
and others 1997), that is, the self-reinforcing model
described above. Interestingly, a model implying a
self-reinforcing tip growth machinery has also been
proposed from observations on using Ca** gradients
to redirect root hair tip growth in Arabidopsis. Thus,
local ionophore activation reoriented Ca®* influx in
these root hairs and so imposed a new Ca** gradient
that directed growth (Bibikova and others 1998).
Although the Ca®* ionophore activation in these
experiments lasted only 0.7 s, the reorientation of
the Ca®' gradient and associated tip growth was
sustained for several minutes. This observation led
to the proposal that the Ca®* gradient might be re-
cruiting tip growth machinery and Ca** channels
and pumps in a self-reinforcing/stabilizing system.
One possible mechanism for this system would be
ROP promoting the formation and stabilization of a
Ca®* gradient that then promotes vesicle fusion at
the apex of the hair. Secretory vesicles may then
help deliver more of both Ca?* influx channels and
ROP to the apex. Coupled to the self-recruiting
nature of ROP-GTP, this interplay of Ca®** and ROP
would form a positive feedback loop that would
stabilize the activities at the growing tip. A more
detailed understanding of the interrelationships of

ROPs and Ca?* transporters should help us to define
how this self-reinforcing network might be regu-
lated.

Tip Growth and the Cytoskeleton

Along with ROPs, the cytoskeleton has emerged as a
key component of the apical growth machinery.
Treatment of root hairs with drugs that disrupt actin
filaments arrests apical growth, and F-actin is well
recognized as playing an essential role in tip growth
(Baluska and others 2000b; Braun and others 1999;
Fu and others 2001; Miller and others 1999). Sim-
ilarly, point mutations in the ACTIN2 gene either
arrest or alter tip growth patterns (Ringli and others
2002). At least two forms of F-actin have been ob-
served in tip-growing cells in both pollen tubes and
root hairs: actin cables that are aligned to the
growth axis and dynamic fine F-actin localized to
the tip (Baluska and others 2000b; Gibbon and
others 1999; Fu and others 2001; Miller and others
1999). Thus, in mature root hairs, actin bundles run
longitudinally to the very apex of the hair, but in
actively elongating root hairs, the actin flares into
fine bundles subapically and these bundles are ex-
cluded from the vesicle-rich apex where tip growth
occurs (Miller and others 1999). How the subapical
fine bundles of actin operate is poorly defined at
present but they may help target Golgi and secre-
tory vesicles to the apical clear zone (Fu and others
2001; Miller and others 1999) where the tip-focused
Ca** gradient may facilitate secretory vesicle fusion
to the plasma membrane (Carroll and others 1998).
Elevated [Ca®'] is known to inhibit cytoplasmic
streaming, fragment F-actin, and depolymerize
microtubules (Cyr 1994; Staiger 2000), and, when
the [Ca®'] gradient is lost, actin microfilaments
protrude to the root hair tip (Miller and others
1999) and growth ceases. Thus, it is possible that the
Ca®* gradient may both promote formation of an
apical zone devoid of cytoskeletal structures and
facilitate the localized exocytosis in this region. A
key observation may be that in pollen tubes ROPI
overexpression leads to stabilization of tip F-actin
and causes depolarized tip growth (Fu and others
2001). Thus, there seems an intimate link between
actin, ROPs, and the apical Ca** gradient in main-
taining the dynamic structure of the apical growth
machinery of tip-growing cells.

Interestingly, if the microtubule cytoskeleton is
disrupted, either by drug treatment or by using
plants expressing antisense to A-tubulin, root hair
tip growth is not arrested. These treatments result in
the root hairs adopting either a waving or branching
growth habit (Bao and others 2001; Bibikova and
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others 1999). These observations suggest that al-
though the microtubule cytoskeleton is not required
for tip growth to proceed, it is involved in stabilizing
the site of the apical growth machinery. How this
stabilization occurs is unknown, but disruption of
kinesin-like microtubule motors leads to waving
growth patterns in tip-growing fungal hyphae (Wu
and others 1998) and altered branching patterns in
trichomes (Oppenheimer and others 1997) and root
hairs (hinkel; Strompen and others 2002), thereby
providing one candidate for a microtubule-associ-
ated protein that could help stabilize the tip growth
machinery. Although microtubules have been pro-
posed to direct growth through their control of
cellulose deposition in diffuse growing cells (Baskin
2001), this is less likely to occur in root hairs where
microtubules do not protrude to the localized site of
growth at the hair’s apex. However, it is clear that
the unique helical structure of the root hair wall
(Emons 1986) plays a critical role in regulating tube
growth, as described in the next section.

The Role of Cell Wall in Tip Growth

During the process of apical growth, cell wall ma-
terial is deposited at the growing tip where it
stretches as the apical dome expands. This process of
wall deformation appears to last for only a few
minutes because as the wall migrates below the
growing apex, due to the continued apical expan-
sion, it loses its ability to yield (Shaw and others
2000). Therefore, apical growth requires coordina-
tion of cell wall deposition and its subsequent rig-
idification. Not surprisingly, therefore, several tip
growth-related mutants are in cell wall-related
genes. CEVI encodes cellulose synthase and cevi
mutants form long root hairs, indicating that cellu-
lose synthesis is important for determining root hair
growth rate (Ellis and others 2002). In contrast,
either the kojak mutation of another cellulose syn-
thase-like protein, KJK, or a T-DNA insertional
mutation in ArCSLD3, a cellulose synthase-like
(subfamily D) gene family member, inhibit apical
growth and the root hairs often burst when they
should switch their developmental program to ap-
ical growth (Favery and others 2001; Wang and
others 2001). Thus, it appears root hairs normally
tightly regulate wall structure to permit expansion
of the apical dome while retaining enough struc-
tural integrity to resist turgor. As well as an initia-
tion phenotype, the previously described /rx mutant
also has a tip-growth-related phenotype, sometimes
forming branched root hairs, suggesting that signa-
ling between cytoplasm and cell wall might provide
some of the fine tuning of wall properties needed to

sustain these tip growth activities (Baumberger and
others 2001).

Root HAIR DEVELOPMENT IN CONTEXT:
CoMPLEXITY, PLASTICITY, AND NUTRIENT
UPTAKE

The previous sections highlight just how complex
the control of root hair formation is, and, although
we have discussed each phase of development in
isolation, Table 5 illustrates the extent of how in-
tertwined the entire process of root hair develop-
ment actually is. Thus, a huge proportion of root
hair mutants describe regulatory components com-
mon to many of the developmental phases that give
rise to a functional root hair. Likewise, auxin and
ethylene seem intimately linked to the regulation of
root hair development at all levels, from cell-fate
specification to tip growth. How then can such a
complex developmental network be placed in con-
text? One answer might lie in the link between root
hair function and its developmental control. The
developmental processes outlined in the sections
above lead to the formation of tubelike projections
from the epidermal cells that should increase the
surface area of the root for nutrient uptake as well
as increase the effective volume of the root in
contact with the soil. There is a wealth of data in-
dicating that root hairs are important for the success
of the plant in nutrient acquisition. For example,
root hairs have been directly shown to take up
phosphorus from the soil (Gahoonia and Nielson
1998), and, under conditions of low phosphorus
availability, wild-type Arabidopsis roots acquire
more phosphorus per unit of carbon respired than
the hairless rkd2 and rhd6 mutants (Bates and
Lynch 2000). Both rkd2 and rhd6 mutants do not
have any other obvious phenotypes other than their
lack of root hairs, and so it appears that root hairs
provided an advantage in nutrient acquisition to the
wild-type plants (Bates and Lynch 2000). There are
also reports suggesting a relationship between root
hair development and the levels of nutrients such as
nitrate (Jungk 2001), calcium, and cobalt (Werner
and others 1985) in the soil. We are only just be-
ginning to identify the transporters in the root hair
responsible for nutrient acquisition processes, but
Table 6 outlines some of these activities that have
been defined to the molecular level.

In addition to direct nutrient transport, root hairs
are known to be essential to the nodulation process
associated with rhizobial symbiosis and nitrogen
fixation, a process where root hair growth is ma-
nipulated to allow successful bacterial colonization,
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Table 6. Examples of Molecularly Identified Nutrient Transporters in Root Hairs for the Major

Macronutrients N, P, and K

Plant species

Transporters

References

Potassium Arabidopsis thaliana

Phosphorous

Nitrogen Lycopersicon esculentum

Lycopersicon esculentum

Inward-rectifying K* channel:
AKTI1

ATKC1

Outward-rectifying K* channel:

GORK

AtKT/AtKUP/HAK K+ transporter
family member:

TRH1

High-affinity phosphorous transporter:

LePT1

Ammonium transporter:
LeAMT1

Nitrate transporters:
LeNrtl-1

LeNrtl-2

Reintanz and others 2002
Rigas and others 2001
Ache and others 2000

Ivashikina and others 2001

Daram and others 1998
Lauter and others 1996

Ludewig and others 2002

nodule formation, and subsequently nitrogen fixa-
tion (Lhuissier and others 2001). Similarly, root
hair density directly correlates with mychorrhizal
infection; the more mychorrhizal associations, the
fewer root hairs (Schweiger and others 1995). The
theme emerging from these symbioses is that root
hair development is altered in response to nutrient
acquisition status, an idea that may be funda-
mental to understanding root hair development in
general.

Thus, the available ecophysiological, molecular,
and electrophysiological data indicate that root hairs
are indeed specialized to improve nutrient acquisi-
tion by the plant. How then might this help explain
the almost bewildering complexity of root hair de-
velopment? Root hairs appear to be remarkably
plastic in their development in response to envi-
ronmental stimuli, not the least of which are the
levels of the nutrients they are to transport. For
example, light regime (Cao and others 1999), pH of
the soil (Ewens and Leigh 1985), and availability of
nutrients such as phosphorus (Bates and Lynch
1996), boron (Goldbach and others 2001), and iron
(Schikora and Schmidt 2001) can profoundly affect
root hair growth and development. At first glance,
Figure 3 could be showing root hair developmental
mutants. In reality, the figure shows the morphol-
ogy of Arabidopsis root hairs in response to water
stress, indicating just how the plasticity of root hair
development can be entrained to the environment.

Understanding root hair development will un-
doubtedly need an appreciation of how develop-
mental plasticity relates to the functions of the root
hair. The observation that many of the defined
molecular regulators and mutants affect many levels

of root hair formation (Table 5) may reflect a highly
coordinated control mechanism entraining the
whole process of root hair development to ambient
environmental conditions. The root hair phenotype
of nutrient transporter mutants, for example, the
tiny root hair K* transporter mutant frhl, suggests
nutrient fluxes might play a role in regulating these
control points. However, it is currently unclear how
the transport activities outlined in Table 6 relate to
the signaling of nutrient status to the root.

Clearly, root hair development is a complex and
plastic process but the hormones auxin and ethyl-
ene appear to be strong candidates for integrators of
the various phases of root hair formation. Our in-
creasing knowledge of, for example, the transcrip-
tional regulators of cell fate or the role of the
cytoskeleton in mediating tip growth provide clear
candidates for the sites of action of the regulators of
this developmental program. However, the critical
question of the molecular mechanism(s) through
which auxin or ethylene exert their coordinating
action remains to be answered.

The ROP family of monomeric G-proteins also
appear involved in multiple steps of the root hair
developmental program and so could play a role in
the coordination of these processes. In addition, the
identification of AtROPs as being localized to the
initiation site represents an important advance in
providing a molecular marker for site specification.
However, there are many other tantalizing indica-
tions of the complexity of the initiation/site speci-
fication process. For example, cytokinesis-related
mutants such as keule and club are incapable of
forming a normal root hair initiation site (Tables 1—-
4). Considering the indications from the work on
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the AtROPs that site specification occurs very early
in the production of the trichoblast in the meristem,
it is tempting to speculate that the initial polarizing
event in the trichoblast may be closely linked to the
polarizing axis of cytokinesis itself. However, mu-
tations in these cytokinesis-related genes cause a
plethora of pleiotropic phenotypes and at present it
is difficult to argue the effect of these mutations on
the root hair initiation process is specific (Sollner
and others 2002).

Clearly, we are far from a comprehensive de-
scription of the molecular basis of root hair forma-
tion. There are still a host of mutants that are
characterized to affect all phases from root hair de-
velopment from cell-fate determination to tip
growth, but we still have very little idea of how
most of them act (Tables 1-4). For example, even
though rkll has helped in highlighting the interac-
tion between auxin and ethylene in root hair for-
mation, all we know at present about its mode of
action is that RHLI encodes a small hydrophilic
protein that contains a nuclear localization signal
and causes reduced root hair numbers. It is unclear
whether it plays a regulatory, structural, or enzy-
matic role in plant development, although its low
expression level may very tentatively hint at a
regulatory activity. Other genes that are involved in
root epidermal patterning include POM/ERH2,
RHL2, RHL3, and HLQ and, for these, we have no
cell or molecular information about what they en-
code or their mode of action. Fortunately, this
wealth of uncharacterized mutants in all phases of
root hair formation indicates that we have a rich set
of potential regulatory genes that, once cloned and
characterized, should help advance our under-

Figure 3. Root hair development in
Arabidopsis plants exposed to water stress.
Note the responses to this stress pheno-
copy many classes of developmental
mutants that have been described: (A)
hairless, (B) arrest during initiation,
(C-F) branching, waving, and bulging
during tip growth. i-initiation site. Scale
bar (A-C) 100 pm. (D-F) 25 pm.

standing of the remarkably plastic developmental
program that characterizes root hair formation.
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